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Spark-Induced Sparks As a Mechanism of Intracellular
Calcium Alternans in Cardiac Myocytes

Robert Rovetti, Xiaohua Cui, Alan Garfinkel, James N. Weiss, Zhilin Qu

Rationale: Intracellular calcium (Ca) alternans has been widely studied in cardiac myocytes and tissue, yet the
underlying mechanism remains controversial.

Objective: In this study, we used computational modeling and simulation to study how randomly occurring Ca
sparks interact collectively to result in whole-cell Ca alternans.

Methods and Results: We developed a spatially distributed intracellular Ca cycling model in which Ca release units
(CRUs) are locally coupled by Ca diffusion throughout the myoplasm and sarcoplasmic reticulum (SR) network.
Ca sparks occur randomly in the CRU network when periodically paced with a clamped voltage waveform, but
Ca alternans develops as the pacing speeds up. Combining computational simulation with theoretical analysis, we
show that Ca alternans emerges as a collective behavior of Ca sparks, determined by 3 critical properties of the
CRU network from which Ca sparks arise: “randomness” (of Ca spark activation), “refractoriness” (of a CRU
after a Ca spark), and “recruitment” (Ca sparks inducing Ca sparks in adjacent CRUs). We also show that the
steep nonlinear relationship between fractional SR Ca release and SR Ca load arises naturally as a collective
behavior of Ca sparks, and Ca alternans can occur even when SR Ca is held constant.

Conclusions: We present a general theory for the mechanisms of intracellular Ca alternans, which mechanistically
links Ca sparks to whole-cell Ca alternans, and is applicable to Ca alternans in both physiological and
pathophysiological conditions. (Circ Res. 2010;106:1582-1591.)
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Intracellular calcium (Ca) cycling plays a central role in
cardiac excitation–contraction coupling.1,2 Ca alternans, a

beat-to-beat alternation in intracellular Ca transient ampli-
tude, is an important factor promoting T-wave alternans and
pulsus alternans, markers conferring an increased risk of
sudden cardiac death.3 Although Ca alternans has been
widely studied in cardiac myocytes,4–13 the underlying mech-
anism remains controversial. Eisner et al4 were the first to
propose that Ca alternans could be explained by a steep
nonlinear dependence of sarcoplasmic reticulum (SR) Ca
release on the diastolic SR Ca load immediately preceding the
release (a steep fractional release–load relationship). This
mechanism requires that diastolic SR Ca load alternate
concomitantly with SR Ca release. Subsequent experimen-
tal6,7,9 and theoretical9,14,15 studies have provided evidence
supporting this mechanism. However, later experimental
studies in rabbit ventricular myocytes by Picht et al12 and in
cat atrial myocytes by Hüser et al13 showed that under some
conditions, Ca alternans can be dissociated from the expected
alternation in SR Ca content, raising questions about whether
the mechanism proposed by Eisner et al is universally valid.

Based on their observations, Picht et al suggested that
refractoriness of ryanodine receptors (RyRs) might play an
important role in frequency-dependent Ca alternans.

In this study, we developed a spatially distributed Ca
cycling model to further investigate these issues. The model
consists of a quasi-2D array of Ca release units (CRUs) (also
called couplons) that are coupled through Ca diffusion in the
myoplasm and the SR network, from which Ca sparks, the
elementary Ca release events of excitation–contraction cou-
pling,16,17 arise. According to present understanding, Ca
sparks can be triggered by 3 mechanisms: (1) by opening of
one or more L-type Ca channels (LCCs) in a CRU during an
action potential, through a process called Ca-induced Ca
release (CICR); (2) by spontaneous openings of RyRs,
especially when SR Ca load is high; and (3) by Ca diffusing
from nearby CRUs that have just released Ca from the SR,
also through CICR. The first 2 mechanisms are well-
documented experimentally, supporting the local control
theory of Stern.18 According to local control theory, the third
mechanism of spark-induced sparks is generally assumed to
be unimportant during normal excitation–contraction cou-
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pling. However, many experimental studies17,19 document-
ing the transitions from Ca spark to Ca wave indicate that
spark-induced sparks become significant at some point as
SR Ca load progressively increases. The exact point at
which this occurs is not well-defined, but experiments by
Parker et al20 and Brum et al21 have shown evidence of
sparks triggering additional sparks, or sparks occurring
sequentially, especially along the Z-line. Because both
LCCs and RyRs open stochastically, Ca sparks tend to
occur sparsely and randomly at low LCC open probability
and/or under strong Ca buffering conditions,22,23 but more
regularly at higher LCC open probability and weak Ca
buffering, eg, for sparks evoked by action potentials in
normal rabbit myocytes.24 Finally, once a CRU releases
Ca, it becomes refractory to further Ca release for a certain
time period, ie, there is a refractory period. Thus Ca sparks
exhibit restitution, such that their amplitude depends on
the time interval from the previous Ca spark.19,25,26

To incorporate these general features into our model, we
represented LCCs and RyRs using random-walk Markov
models. Using computer simulation of our spatially distrib-
uted Ca cycling model together with nonlinear dynamics
analysis, we show how 3 generic CRU properties, including
“randomness” (the stochastic nature of Ca sparks), “refracto-
riness,” and “recruitment” (the ability of 1 spark to recruit its
neighboring CRUs to spark, or “spark-induced sparks”),
interact synergistically to result in Ca alternans. Our simula-
tions and theory agree with the experimental observations by
Diaz et al6,7 that irregular, asynchronous Ca release is
required for Ca alternans, with local Ca waves triggered
during the large-release beat. However, we also show that a
steep fractional release–load relationship emerges naturally
as a collective behavior of the CRU network and Ca alternans
can even occur when SR Ca content is held constant. This
agrees with the experimental observations by Picht et al12 and
Hüser et al13 that alternans in diastolic SR Ca load is not
required for Ca alternans.

Methods
Spatially Distributed Ca Cycling Model
We developed a quasi-2D spatially distributed Ca cycling model (Figure
1), which includes a network SR (NSR) domain and a myoplasmic
(Myo) domain coupled via SR Ca release and uptake. As illustrated in
Figure 1A, this model comprises a CRU network coupled via Ca
diffusion in each domain. Each CRU contains (Figure 1B): a junctional
SR (jSR), which is diffusively connected to the NSR (JSR), and a dyadic
space (DS), which is diffusively connected to the myoplasm (JDS).
Extracellular Ca (JLCC) enters the dyadic space through voltage-gated
LCCs (5 channels per CRU), which open stochastically and are
simulated by a simple Markov model (Figure 1C). Ca is released from
the jSR (JRyR) through its associated cluster of RyRs (100 channels per
CRU) to the DS. The RyRs also open stochastically, and are simulated
using a Markov model by Stern et al27 (Figure 1D), in which activation
and inactivation of RyRs are regulated by Ca in DS (with no regulation
by SR luminal Ca). Ca is either extruded from the cell via the Na-Ca
exchanger (JNCX), or taken back up into the NSR via the SERCA pump
(Jup). Because at the resting potential the Na-Ca exchanger always
extrudes Ca, to maintain a stable Ca equilibrium state, we also added a
background Ca current (Jb) to bring Ca into the myoplasmic domain. A
network of 100�100 CRUs was used in this study. The differential
equations and parameter values used in this study are detailed in the
Online Data Supplement at http://circres.ahajournals.org.

Computer Simulation
We discretized the local NSR and the myoplasm domains of each
CRU into 5�5 grids. Thus, a 100�100 CRU network was dis-

Non-standard Abbreviations and Acronyms

CICR calcium-induced calcium release

CRU calcium release unit

DS dyadic space

jSR junctional sarcoplasmic reticulum

LCC L-type calcium channel

NSR network sarcoplasmic reticulum

PCL pacing cycle length

RyR ryanodine receptor

SR sarcoplasmic reticulum

Figure 1. The spatially distributed Ca cycling
model. A, Schematic plots (side view and top
view) of a coupled CRU network. B, Detailed illus-
tration of a CRU. C, Simplified Markov model of
the LCC. “O” is the open state, and “I” and “C”
are the closed states. The LCC is activated by
voltage and inactivated by voltage and Ca (as indi-
cated by “Ca” in the graph) in the dyadic space.
D, The Markov model of the RyR from Stern et
al.27 “O” is the open state; “I”, “R”, and “C” are
the closed states. RyR is activated and inactivated
by Ca (as indicated by “Ca” in the graph) in the
dyadic space.
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cretized into 2 coupled 500�500 grids. The differential equations
were numerically simulated using an operator splitting method by
advancing first the diffusion step and then the remaining reaction
steps using a first-order forward Euler method with time step
�t�5 �s. The stochastic transitions of LCC and RyR were
updated asynchronously using an explicit method with a variable
time step (�t�5 �s to 1 ms) adapted to the local Ca concentra-
tions. The details of the numeric and simulation methods are
presented in the Online Data Supplement.

Results
Steep Relationship Between SR Ca Release and SR
Ca Load
A steep relationship between SR Ca release and SR Ca load
(steep fractional release–load relationship), which plays an
important role in regulating contractile force during normal
excitation–contraction coupling, has been implicated in the
genesis of Ca alternans, as described earlier. To explore the
mechanism, we paced our CRU network model with a voltage
clamp waveform to evoke Ca release from the SR. After
achieving steady state, we recorded the whole-cell SR Ca
content just before stimulation, and Ca depletion after stimula-
tion (see inset of Figure 2A). By changing the amplitude of the
background Ca current to alter the SR load, we obtained the
relationship between SR Ca depletion and SR Ca load (Figure
2A, black symbols). The fractional release (Figure 2B) was

small and insensitive to SR Ca content when SR load was low
but increased steeply between 600 �mol/L and 700 �mol/L,
saturating at around 50%. For each SR load, we also calculated
the total number of sparks (Figure 2C). The number of sparks
increased slowly at low SR load, but increased steeply between
600 �mol/L and 700 �mol/L, beyond which the spark number
saturated (at 10 000, the total number of CRUs in the system).
To examine how fractional release is linked to sparks, we
calculated the average whole-cell SR depletion ��Ca� by
summating the Ca depletion attributable to each individual
spark, ie:

(1) ��Ca�� �
i�1

Nspark

�CaSR�Cab
i �/Ntotal

��CaSR��Cab��Nspark/Ntotal,

where CaSR is the luminal SR Ca content before each release,
Cab

i is the minimum SR Ca content of the ith CRU after the
depletion (with �Cab���

i�1
NsparkCab

i /Nspark being the average post-
depletion content), Nspark is the number of sparks evoked, and
Ntotal is the total number of CRUs. Using the spark data in Figure
2C and �Cab��430 �mol/L, the predicted Ca depletion (open
circles in Figure 2A) using Equation 1 agrees well with the direct
measurements. Note that �Cab��430 �mol/L is close to the
depletion levels seen in individual sparks (see Figure 3 and 4,

Figure 2. Steep fractional release–load
relationship. A, SR Ca depletion vs SR
Ca load measured in simulation (filled
circles) and transformed using Equation
1 with �Cab��430 �mol/L (open cir-
cles). Inset shows the voltage clamp
wave form (top) and the SR Ca trace
(bottom) illustrating the measurement of
depletion vs load. SR Ca load was
altered by changing the background Ca
current (Jb) in the model (see Methods).

B, Fractional Ca release vs SR Ca load. The fractional SR release was calculated from A using SR depletion divided by SR load. The gray
line is the best fit with the Hill function: 0.49�[CaSR]17.5/{66717.5	[CaSR]17.5}. C, Spark count vs SR Ca load in the corresponding simulations
in A. In simulation, a spark is defined as occurring when the Ca concentration in the dyadic space surges above 10 �mol/L.

Figure 3. Ca transient in the Ca
cycling model at slow pacing. A,
Clamped voltage (top), whole-cell SR Ca
concentration (black), and whole-cell
myoplasm Ca concentration (red) vs
time for PCL�1.4 second. B, Ca traces
from jSR (black dashed) and dyadic
space (red) at different spatial locations
for the same simulation shown in A. The
blue line in each graph shows the Ca
fluxes through the LCCs in the corre-
sponding CRUs. C, Snapshots of myo-
plasmic Ca spatial distribution taken at
the moment of the Ca transient peaks
for 3 consecutive beats. D, Ca snap-
shots from a small region (dashed box
in beat #1 in C) show wave-like spread
of Ca release.
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and Online Figure IV). Therefore, in our model in which Ca
release by individual CRUs is not regulated by SR luminal Ca,
a steep fractional release–load relationship nevertheless emerges
as a collective behavior of the network, in proportion to the
fraction of CRUs in the network generating sparks. In other
words, a steep release–load relationship is not required as a
property of individual CRUs in order for the CRU network, as a
whole, to exhibit this behavior. The behavior arises because
when SR and myoplasm reach equilibrium, higher SR Ca
content translates to a higher mean Ca concentration in myo-
plasm and DS. At higher resting Ca in DS, a smaller increment
in Ca is needed to induce opening of RyRs. Therefore, as Ca
increases, the probability of Ca sparks triggered either by
Ca influx through LCC openings or by Ca released from the
neighboring CRUs also increases in a nonlinear fashion, as
shown in Figure 2.

From Random Ca Sparks to Whole-Cell
Ca Alternans
When the CRU network model is paced periodically with a
clamped voltage waveform at slow rates, the whole-cell Ca
transient and diastolic SR Ca load are regular (Figure 3A).
Although the summated Ca transient is regular, individual Ca
sparks occur irregularly. In Figure 3B, we plot several traces of
Ca from individual jSR spaces (Ca “blinks,”28 black), dyadic
spaces (Ca sparks, red), and LCC Ca fluxes (blue) in arbitrarily
selected CRUs. It can be seen that Ca sparks, blinks, and LCC
openings occur more or less randomly. A spark may occur with
or without LCC openings, and LCC openings in a CRU may or
may not cause a Ca spark. Sparks occurring without companion
LCC openings are sometimes induced by neighboring sparks
(spark-induced sparks). Blinks of small amplitude can occur in
the absence of sparks at a given location, because Ca release in
a CRU drains Ca from neighboring CRUs via diffusion in the
NSR. We calculated the numbers of CRUs with LCC openings,
total sparks, LCC-triggered sparks (sparks with LCC openings),

and recruited sparks (sparks without LCC openings), which are
shown in Online Figure I (A). In this case, 
70% of the CRUs
release Ca on each beat, of which 70% are LCC-triggered
sparks, and 30% are spark-induced sparks. Because Ca sparks
occur randomly, the spatial distribution of myoplasmic Ca
exhibits a random spatial pattern, which changes from beat to
beat (Figure 3C), similar to the irregular pattern observed during
action potential clamps in mouse ventricular myocytes,22 al-
though different from rabbit ventricular myocytes (see Discus-
sion).24 In addition, CRUs tend to release Ca in clusters because
of spark-induced sparks, resulting in spreading Ca waves (Figure
3D), which are sporadic and abort locally. Space-time plots
(line-scan) exhibit random and patch-like patterns, resembling
the experimental data by Diaz et al6 (see Online Figure II).

As the pacing cycle length (PCL) decreases, whole-cell Ca
alternans emerges. During alternans, both whole-cell myoplas-
mic Ca and SR Ca transients alternate in size from beat to beat
(Figure 4A). The individual Ca sparks do not alternate but still
occur randomly (Figure 4B), similar to the case of regular
release (Figure 3B). However, the whole-cell spatial Ca pattern
alternates from beat to beat (Figure 4C, see also the Online
Video). Note that Ca sparks are sporadic and infrequent during
the small Ca transients. During the large Ca transients, the sparks
are still randomly distributed in space, but become more fre-
quent. During alternans, the local waves occur during the large
Ca transient (Figure 4D) but rarely during the small Ca transient,
in agreement with the observations of Diaz et al.7 Also, notice
that the number of CRUs triggered by LCC openings only
alternates slightly (Online Figure I, B), indicating that many
LCC openings during the small Ca beat do not successfully
trigger Ca sparks. The recruitment rate (defined as the ratio of
recruited sparks to LCC triggered sparks) alternates between
15% and 30% (Online Figure I, C). In a time–space plot (line
scan), the alternating pattern (Online Figure III) resembles the
experimental data from Diaz et al.7

Figure 4. Ca alternans in the Ca
cycling model. A, Clamped voltage
(top), whole-cell SR Ca concentration
(black), and whole-cell myoplasm Ca
concentration (red) vs time for PCL�500
ms. B, Ca traces from jSR (black
dashed) and dyadic space (red) at dif-
ferent spatial locations for the same sim-
ulation shown in A. The blue line in
each graph shows the Ca fluxes through
the LCCs in the corresponding CRUs. C,
Snapshots of myoplasmic Ca spatial dis-
tribution taken at the moment of the Ca
transient peaks for the 6 consecutive
beats shown in A. D, Ca snapshots from
a small region (dashed box in beat #2 in
C) show wave-like spread of Ca release.
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During both regular pacing and rapid pacing-induced
alternans, the duration of Ca sparks varies from 
30 ms to
�100 ms (Online Figure IV). The local SR Ca depletions
(blinks) largely coincide with local Ca sparks, but the
recovery of the local SR Ca content always exhibits a slow
phase, reflecting the overall recovery of the global SR Ca
content. In addition, the local SR Ca may deplete before
(Online Figure IV, D) or after (Online Figure IV, E) the
corresponding CRU spark. These results generally agree with
the experimental observations by Zima et al,29 and are
attributed to the diffusion of Ca within the SR network.

Ca Alternans and the Steep Fractional
Release–Load Relationship
To test whether a steep fractional release–load relationship is
required for Ca alternans, as proposed in previous studies,4,14 we
clamped the SR Ca to a constant value, and paced the system as
in Figure 4. Ca alternans still occurred (Figure 5A), indicating
that a steep release–load relationship is not required. However,
we could only induce Ca alternans when Ca was clamped at a
high level corresponding to the steep region of the fractional SR
Ca release curve (between 600 and 700 �mol/L), and over a
limited range of cycle lengths. If the SR Ca was clamped at a
level either below or above this, alternans did not occur.

To further analyze how SR Ca release is related to SR load,
we used a “ramped pacing” protocol similar to that by Picht
et al.12 We initially paced the model at the control PCL of 500
ms, at which Ca alternans was already present, and then
gradually increased the PCL to 2000 ms, at which Ca
alternans was absent. A plot of the SR depletion versus SR
load (Figure 5B) resembles the data from the experiment by
Picht et al12 (Online Figure V). In particular, note that the
diastolic SR Ca content during periodic beating in the
absence of Ca alternans (see Figure 5B) is significantly lower
than the SR diastolic Ca immediately preceding the small-
release beat during stable alternans. However the amount of
Ca release during the periodic beating is greater in the
absence of Ca alternans, indicating that the SR Ca release
does not completely rely on SR Ca content.

A Dynamical Mechanism of Ca Alternans
In a recent theoretical study,30 we demonstrated a period-
doubling bifurcation in an array of coupled randomly excit-
able elements subjected to periodic forcing and hypothesized
that the same mechanism might be applicable to Ca alternans
in cardiac myocytes (although no direct comparison was
made). The 3 critical properties of the array required for this

behavior included 2 properties assigned to the individual
excitable elements (random activation and a refractory pe-
riod), and 1 cooperative property between the elements
(recruitment). Here, we revisit the theory in terms of Ca
sparks and Ca alternans and directly compare the general
theory to the modeling results.

We assume that � is the probability of a primary Ca spark
(Figure 6A), activated either spontaneously (because of high SR
load or leakiness) or by opening of LCCs in the CRU; � is the
probability of a primary Ca spark recruiting a neighboring CRU
to spark (secondary sparks); and � the probability that a CRU
activated on the previous beat remains refractory during the
present beat. If, on the kth beat, Nk out of N0 total CRUs were
activated, then on the (k	1)th beat, the number of CRUs
available to be activated are Ak�N0��Nk, because �Nk CRUs
are still in the refractory state. The number of primary sparks at
the (k	1)th beat is then �Ak. The number of secondary sparks
will be a fraction (f) of the remaining available (recovered)
CRUs, ie, (1-�)Akf. Therefore, the total number of activated
CRUs during the (k	1)th beat is:

(2) Nk	1��Ak	(1��)Ak f�(N0��Nk)[�	(1��)f]

Equation 2 relates the number of Ca sparks in the present beat
to the number of Ca sparks in the previous beat. What
determines the fraction f? For an intuitive understanding, we
show 2 schematic plots in Figure 6B for 2 beats in which
CRUs have either mostly regained excitability (high recov-
ery), or mostly remained refractory (low recovery). Because
the spatial distribution of excitable and refractory CRUs is
random in both cases, excitable CRUs are more isolated from
each other in the case when most CRUs are refractory. This
makes recruitment more difficult and leaves more potentially
excitable CRUs unrecruited when the system is less recov-
ered, and thus the recruitment rate is lower. Besides recovery,
f also depends on primary spark rate �, recruitment probabil-
ity �, and the number of nearest neighbors. Using a mean-
field approximation,30 we explicitly derived f as (see the
Online Data Supplement):

(3) f(�, �, �, Nk)�1�[1���(1��Nk/N0)]n

where n is the number of neighbors of a CRU. The recruit-
ment rate, defined as the ratio of recruited sparks to primary
sparks, ie, (1��)Akf/�Ak, is then:

(4) recruitment rate�(1��)f/�

Figure 5. Ca alternans does not rely
on SR Ca load. A, Clamped SR Ca con-
centration (gray dashed) and myoplas-
mic Ca concentration vs time (PCL�500
ms). B, Ca depletion from SR vs SR Ca
content as PCL increased gradually from
500 to 2000 ms in increments of 50 ms,
with the initial 20 beats for PCL�500 ms
(“stable alternans”) and the last 10 beats
for PCL�2000 ms (“regular depletion”).
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The recruitment rate (Equation 4) for different � and � is
shown in Figure 6C along with the direct numeric results.
Recruitment rate increases as � increases, or as the number of
recovered CRUs increases but decreases as � increases.

Inserting Equation 3 into Equation 2, the steady state
equilibrium of the system and its stability can be explicitly
analyzed (see the Online Data Supplement). The stability of
the steady state depends on �, �, and �, and also on the
function for f (and its slope). When the steady state becomes
unstable, alternans occurs. Behaviors of Equation 2 are
illustrated in the �-� parameter space in Figure 6D, with
alternans occurring in the region above the line for each n
(number of neighbors). In general, alternans occurs when �
is intermediate (Figure 6E), � is large, and � is large. Note
that the large slope of the recruitment ratio curves shown
in Figure 6C also occurs at intermediate � and large �.
Outside of the alternans regime, a transient alternans
attributable to the initial condition can be observed but
quickly converges to the stable steady state (Figure 6F).
However, alternans is persistent in the alternans regime
(Figure 6G) where the steady state is unstable.

The parameters �, �, and � in Equation 2 do not explicitly
appear in the Ca cycling model, but can be linked to
physiological parameters in the physiologically detailed Ca
cycling model to gain mechanistic insights into Ca alternans,
as illustrated by the examples below:

1. The parameter � is affected by factors such as the open
probabilities of the LCC and RyR channels and the Ca
content of the myoplasm and the SR. For example,
decreasing LCC open probability is analogous to de-

creasing �. If the LCC open probability is high (thus �
is high), based on the theoretical predictions shown in
Figure 6D and 6E, then inhibiting the LCC current
(thereby lowering �) should promote alternans, which
indeed occurs in our spatially distributed Ca cycling
model (Figure 7A). This was also observed experimen-
tally in voltage-clamped myocytes by partially blocking
LCC.31,32 � can also be affected by extracellular Ca
concentration [Ca]o. Lower [Ca]o corresponds to
smaller �. Figure 7B shows that alternans occurs in the
intermediate range of [Ca]o in our Ca cycling network
model, agreeing with the theoretical prediction that
alternans occurs in the intermediate range of �. This
also agrees with the experimental observations that
overloading the cell with extracellular Ca can either
promote33 or suppress34 Ca alternans.

2. The probability � that a CRU remains refractory after a
previous spark can be attributed to either intrinsic RyR
channel properties or RyR regulation by SR luminal Ca,
such as by calsequestrin binding to the RyR protein
complex.35,36 Our theory predicts that alternans can
occur only when � is very large, indicating that either
prolonging the refractory period or shortening the stim-
ulation period (which increases �) will promote alter-
nans if � and � are also properly chosen. For example,
Schmidt et al35 showed in mouse heart that overexpres-
sion of calsequestrin promoted pulsus alternans and
Restrepo et al37 showed in a modeling study that
increasing calsequestrin concentration prolonged RyR
refractoriness and promoted alternans, in agreement
with our theoretical predictions. Figure 7C shows that,
in our simulations using the spatially distributed Ca
cycling model, alternans is promoted by decreased PCL,

Figure 6. Mean-field theory of Ca
alternans. A, Illustration of different
CRU states and spark-induced sparks.
� is the intrinsic probability an individ-
ual CRU will spark, whereas � is the
probability that 1 sparking CRU will
recruit another to spark. B, Schematic
plots illustrating recruitment rate at a
low and a high recovery beat. C,
Recruitment rate (defined as the ratio
of recruited sparks to primary sparks)
vs recovered ratio (defined as the ratio
of available CRUs to total CRUs) for
different � when ��2/3 (left) and for
different � when ��0.75. Lines are the-
oretical results of Equation 4, which are
confirmed by numeric simulations
(symbols). Numeric simulations were
performed in a 100�100 CRU array, in
which we first randomly assigned
recovered and uncovered CRUs with a
certain ratio, and then applied the rules
outlined in A to determine the primary
and recruited sparks. D, Phase diagram
of �-� parameter space for ��0.98 and
different number (n) of neighbors,
obtained analytically using Eqs.2 and 3
(see the Online Data Supplement). E,
Bifurcation diagram showing spark
number vs parameter � by iterating
Equation 2 with ��0.75, ��0.98, and
n�4. For each �, the first 100 transient

beats were dropped and the spark numbers in last 10 beats were plotted. F and G, Number of sparks vs the beat number from
the nonalternating (��0.5, ��0.25, and n�4) and the alternating (��0.8, ��0.75, and n�4) regions in D.
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consistent with the standard experimental method of
inducing alternans by decreasing PCL.

3. The spatial cooperativity parameter �, reflecting mainly
the sensitivity of CICR, is affected by Ca level in the
myoplasm, Ca diffusion rate, and the spacing between
CRUs. For example, increasing CRU spacing makes
recruitment less efficient (thus decreasing �), which,
based on our theory, suppresses alternans. This is
demonstrated in the simulation results shown in Figure
7D. In their modeling study, Restrepo et al37 showed
that increasing the Ca diffusion rate (and thus increasing �)
promoted alternans, agreeing with our mean-field the-
ory predictions. In addition, loading the cell with more
Ca increases the sensitivity of RyRs to CICR, which
enhances both the primary spark rate � and recruitment
rate �, thus promotes Ca alternans as [Ca]o increases
from low to high (Figure 7B).

Discussion
In this study, we developed a spatially distributed Ca
cycling model to investigate how Ca sparks interact
cooperatively to generate the steep fractional release–load
relationship and Ca alternans. We show that Ca alternans
emerges naturally as a result of 3 generic properties of the
CRUs: randomness, refractoriness, and recruitment. Two
of these 3 properties represent intrinsic CRU properties
(random activation of Ca sparks and the refractory period of
a CRU), whereas the third (recruitment, or spark-induced
sparks) is governed by the spatial cooperativity between
CRUs. In this Ca cycling model, Ca alternans does not
causally rely on either regulation of RyR by SR luminal Ca,
or a steep fractional release–load relationship, as proposed
previously.4 This is not to imply that the latter regulatory
features do not exist or are unimportant, but merely to show
that they are not formally required to produce Ca alternans

when a generic mechanism of RyR refractoriness, coupled
with randomness and recruitment, is present.

Randomness
A typical myocyte consists of 10 000 to 20 000 CRUs with
each CRU containing 5 to 20 LCCs and 50 to 300
RyRs.1,17,38–40 Because both LCC and RyR open randomly,
Ca sparks are also naturally random, but their degree of
randomness depends on the open probability of LCC and
RyR. For example, if one assumes that only 1 LCC is needed
to trigger a spark, and if a CRU has 10 LCCs, each with a low
open probability of 0.05, the probability that none of the
LCCs will open on a given depolarization is (1�0.05)10�0.6,
so that the probability of a spark is only 0.4. However, for the
same CRU in which the open probability of LCC is 0.5, the
probability that none of the LCC will open is reduced to
(1�0.5)10�0.001, so that a Ca spark will occur on virtually
every beat. Equivalently, if the LCC open probability is high,
but the probability of an LCC opening activating the RyRs is
low, the Ca spark probability will also decrease. In our
mean-field theory, � is the parameter describing the random
excitability of the LCC and RyR channels. In the extreme
case, when ��1, all CRUs will fire as primary sparks at each
beat, no recruitment can occur and thus alternans cannot
develop. As illustrated in Figure 6, randomness is also
necessary for the steep nonlinear recruitment function f. If the
recovered CRUs were not randomly distributed, it would be
hard to image how such a nonlinear recruitment function f can
emerge. In fact, alternans in the experiments by Diaz and
colleagues6,7,32 was induced by reducing either LCC open
probability (with LCC blockers or mildly depolarized voltage
clamp pulses), or coupling fidelity (with RyR blockers or
acidosis to reduce RyR open probability). In addition, they
observed in their confocal imaging studies that asynchronous

Figure 7. Predictions of the CRU net-
work model of Ca cycling. A, Peak
myoplasmic Ca concentration vs the
maximum LCC conductance (gCa). B,
Peak myoplasmic Ca concentration vs
[Ca]o. C, Peak myoplasmic Ca concen-
tration vs PCL. D, Peak myoplasmic Ca
vs CRU distance. In each graph, 5 to 10
peak myoplasmic Ca concentrations
were plotted against each selected
x-axis value.
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Ca release was needed for alternans. Their studies provide
direct experimental support for our theoretical argument that
randomness is necessary for alternans. Our prediction that
random spark activation plays a key role in alternans might
seem incompatible with the observation that when rabbit
ventricular myocytes are paced with an action potential clamp
at rates too slow to induce alternans, sparks occur regularly
from the same sites.24 However, we predict that when the rate
is increased sufficiently to induce Ca alternans, this regular
spark appearance will deteriorate and become asynchronous,
because of the reduction in coupling fidelity as the rapid heart
rate impinges on RyR refractoriness. This will be an impor-
tant experimental test of the theory.

It has been shown experimentally that Ca release becomes
asynchronous in diseased heart,41,42 which may be caused by a
lower primary spark rate (�) resulting from remodeling pro-
cesses, such as T-tubule disruption,43,44 altered excitation–con-
traction coupling, and altered cooperativity between RyRs
within the same CRU. Lowering � enhances not only random-
ness, but also enhances recruitment (because more CRUs are
available to be recruited), which may be one of the predisposing
causes of alternans in ischemia,45 heart failure,46 and catechol-
aminergic polymorphic ventricular tachycardia.47

Refractoriness
After RyRs in a CRU open and release Ca, they inactivate and
require time to recover excitability. RyRs are the pore-
forming proteins mediating SR Ca release, but coassemble
with a variety of accessory proteins that regulate their open
probability and sensitivity to myoplasmic free Ca. Although
the precise molecular basis of CRU refractoriness remains
controversial, several nonexclusive mechanisms have been
proposed. (1) Intrinsic RyR refractory period, as in the model
proposed by Stern et al (Figure 1D): in the simplest mecha-
nism, RyRs undergo conformational changes between differ-
ent states, similar to other ligand-gated channels, one of
which is a refractory state. (2) Direct regulation of RyR open
probability by SR luminal Ca: in this mechanism, RyRs are
activated by increased myoplasmic free Ca, but their sensi-
tivity is also coregulated by a Ca-binding site in the C
terminus of RyR, which senses SR luminal free Ca.48 (3)
Indirect regulation of RyR open probability by SR luminal
Ca: in this mechanism, RyRs are activated by increased
myoplasmic free Ca, but the sensitivity is coregulated by
calsequestrin, through its interaction with accessory proteins
such as triadin and junctin in the RyR protein complex.49

In terms of providing the refractoriness required in our
analysis, any one of these 3 molecular mechanisms of RyR
refractoriness is sufficient to account for alternans,
whether SR luminal Ca regulation is absent (mechanism 1)
or present (mechanisms 2 and 3). Although refractoriness
is necessary for alternans in our theory, it is not sufficient
without the other 2 factors (randomness and recruitment).
Its role in alternans can be understood as follows (see also
Figure 6B and 6C). Immediately before the beat with a
large Ca transient, most of the CRUs are recovered
(because they did not spark on the prior beat with a small
Ca transient). Thus, available CRUs are densely distrib-
uted, such that their probability of recruiting secondary

sparks is high (large f in Equation 2). Immediately after-
ward, however, most CRUs will be refractory, because
they were just activated. Thus, on the next beat following
a large Ca transient, few CRUs are available and they will
be sparsely distributed, and recruitment of secondary
sparks is therefore low (small f in Equation 2).

In agreement with our theoretical argument, increasing
RyR refractoriness by transgenic overexpression of calse-
questrin was shown in both experiments35 and simulations37

to promote alternans. On the other hand, Ca alternans was
also reported to be enhanced in a transgenic mouse model of
catecholaminergic polymorphic ventricular tachycardia, in
which RyR refractoriness was decreased.47 It will be inter-
esting to explore further whether specific combinations of
randomness, refractoriness, and recruitment can concomi-
tantly promote both Ca alternans and Ca waves.

Recruitment
Recruitment, ie, the efficiency of spark-induced sparks, is
determined by spatial cooperativity between CRUs. It is
mediated by Ca diffusion and is sensitive to a variety of
factors, including the Ca concentrations in the myoplasm and
SR, the SR Ca uptake and leak rates, Ca buffering, and the
spacing between adjacent CRUs. The process of spark-
induced sparks, combined with randomness and refractori-
ness, is crucial for the nonlinearity (recruitment function f in
Equation 2) required for alternans. For example, as shown in
Online Figure I, during steady state (PCL�1400 ms), the
recruited sparks accounted for 30% of the total sparks
(corresponding to recruitment rate 40%). During alternans
(PCL�500 ms), the recruitment rate was around 30% on the
large beat, but dropped to 15% on the small beat. Spark-
induced sparks are also the basis of myoplasmic Ca waves
attributable to CICR,19,50 and therefore naturally link Ca
waves to Ca alternans, as observed in experiments.5–7 Our
simulations show that reducing CRU spacing increases re-
cruitment rate and thus promotes alternans. This may be one
of the predisposing causes of alternans in heart failure, in
which remodeling has been shown to decrease CRU spac-
ing.51 Whether spark-induced sparks occur under normal
conditions is unclear, but they are promoted by conditions of Ca
overload (increased extracellular Ca or fast pacing), increased
RyR sensitivity to SR or myoplasmic Ca, decreased CRU
distance, etc. These conditions are known to be present in
disease states,51,52 consistent with the observation that Ca alter-
nans and waves are promoted by heart failure and ischemia.

Steep Nonlinear Fractional Ca
Release–Load Relationship
A steep nonlinear release–load relationship is a fundamental
property of cardiac excitation–contraction coupling and plays
an important role in the physiological regulation of the
whole-cell Ca transient amplitude, and hence contractile
force, in response to changes in heart rate and autonomic tone
that alter the SR Ca load. Both myoplasmic and luminal SR
Ca regulation of RyRs have been suggested as possible
sources for the steep nonlinear relationship.53 Here, we show
that SR luminal Ca regulation of RyR is not strictly necessary
for the steep release–load relationship and Ca alternans. The
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underlying source of the steep release–load relationship is a
dual increase in both SR Ca and myoplasmic Ca level. The
increase of myoplasmic Ca increases the open probability of
the RyR and thus increases the Ca spark probability of a
CRU. In addition, as myoplasmic Ca increases, the probabil-
ity of spark-induced sparks also increases. These 2 factors
cause the number of sparks to increase steeply and nonlin-
early as the SR load increases, resulting in a steep nonlinear
release–load relationship. Although the occurrence of Ca
alternans is always accompanied by a steep fractional relea-
se–load relationship as observed in experimental stud-
ies,4,6,7,11 a causal relation between the steep fractional
release–load relationship and Ca alternans may not exist. In
other words, both the steep fractional release–load relation-
ship and alternans may be the result of enhanced CICR and
spark recruitment, instead of one causing the other. On the
other hand, although our model does not include SR luminal
Ca regulation of RyR, we do not mean to imply that this
feature is not important, only that in a minimal CRU network,
it is not an absolute requirement for either a steep release–
load relationship or Ca alternans. In fact, experimen-
tal35,36,49,54 and modeling37,52 studies directly support luminal
SR Ca regulation of RyR as playing important roles in Ca
release and Ca alternans. However, it is more difficult to
explain the dissociation of SR Ca load and release during Ca
alternans as observed by Picht et al,12 if release is tightly
regulated by luminal SR Ca load under all conditions. It is
intriguing to speculate that luminal SR Ca regulations may
have evolved as a refinement to an already present property of
the CRU network, to provide robustness and/or a greater
dynamic performance range.

Limitations
In our study, we have focused on the minimum properties of
a CRU network required to produce Ca alternans. Several
limitations need to be addressed in future studies. (1) A real
myocyte is a 3D system that contains a complex and
heterogeneous CRU network coupled with a complex
T-tubule network. (2) Only 1 of the 3 molecular mechanisms
of refractoriness was studied in our Ca cycling model. (3)
Many molecular signaling pathways regulate LCCs, RyRs,
and SERCA pump. These molecular and subcellular factors
undoubtedly play important roles in the genesis of Ca
alternans. In addition, how intracellular Ca couples with
membrane voltage to result in repolarization alternans and how
the Ca alternans maintains synchronized in multicell tissue need
to be investigated in future studies. Despite these limitations, our
model and theory can explain the key experimental observations
and provide a unifying general theory linking the steep fractional
release–load relationship, Ca alternans, and Ca waves in cardiac
myocytes.
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13. Hüser J, Wang YG, Sheehan KA, Cifuentes F, Lipsius SL, Blatter LA.
Functional coupling between glycolysis and excitation-contraction coupling
underlies alternans in cat heart cells. J Physiol. 2000;524(Pt 3):795–806.

14. Shiferaw Y, Watanabe MA, Garfinkel A, Weiss JN, Karma A. Model of
intracellular calcium cycling in ventricular myocytes. Biophys J. 2003;
85:3666–3686.

15. Tao T, O’Neill SC, Diaz ME, Li YT, Eisner DA, Zhang H. Alternans of
cardiac calcium cycling in a cluster of ryanodine receptors: a simulation
study. Am J Physiol Heart Circ Physiol. 2008;295:H598–H609.

16. Cheng H, Lederer WJ, Cannell MB. Calcium sparks: elementary events
underlying excitation-contraction coupling in heart muscle. Science.
1993;262:740–744.

17. Cheng H, Lederer WJ. Calcium Sparks. Physiol Rev. 2008;88:1491–1545.
18. Stern MD. Theory of excitation-contraction coupling in cardiac muscle.

Biophys J. 1992;63:497–517.
19. Cheng H, Lederer MR, Lederer WJ, Cannell MB. Calcium sparks and

[Ca2	]i waves in cardiac myocytes. Am J Physiol. 1996;270:C148–C159.
20. Parker I, Zang WJ, Wier WG. Ca2	 sparks involving multiple Ca2	 release

sites along Z-lines in rat heart cells. J Physiol. 1996;497(Pt 1):31–38.
21. Brum G, Gonzalez A, Rengifo J, Shirokova N, Rios E. Fast imaging in

two dimensions resolves extensive sources of Ca2	 sparks in frog skeletal
muscle. J Physiol. 2000;528:419–433.

22. Bridge JH, Ershler PR, Cannell MB. Properties of Ca2	 sparks evoked by
action potentials in mouse ventricular myocytes. J Physiol. 1999;518(Pt
2):469–478.

23. Wang SQ, Song LS, Lakatta EG, Cheng H. Ca2	 signalling between
single L-type Ca2	 channels and ryanodine receptors in heart cells.
Nature. 2001;410:592–596.

24. Inoue M, Bridge JH. Ca2	 sparks in rabbit ventricular myocytes evoked
by action potentials: involvement of clusters of L-type Ca2	 channels.
Circ Res. 2003;92:532–538.

25. Sobie EA, Song LS, Lederer WJ. Local recovery of Ca2	 release in rat
ventricular myocytes. J Physiol. 2005;565:441–447.

1590 Circulation Research May 28, 2010

 at UCLA BIOMED LIBRARY SERIALS on May 29, 2010 circres.ahajournals.orgDownloaded from 

http://circres.ahajournals.org


26. Sobie EA, Song LS, Lederer WJ. Restitution of Ca2	 release and
vulnerability to arrhythmias. J Cardiovasc Electrophysiol. 2006;
17(Suppl 1):S64 –S70.

27. Stern MD, Song LS, Cheng H, Sham JS, Yang HT, Boheler KR, Rios E.
Local control models of cardiac excitation-contraction coupling. A
possible role for allosteric interactions between ryanodine receptors.
J Gen Physiol. 1999;113:469–489.

28. Brochet DX, Yang D, Di Maio A, Lederer WJ, Franzini-Armstrong C,
Cheng H. Ca2	 blinks: rapid nanoscopic store calcium signaling. Proc
Natl Acad Sci U S A. 2005;102:3099–3104.

29. Zima AV, Picht E, Bers DM, Blatter LA. Termination of cardiac Ca2	

sparks: role of intra-SR [Ca2	], release flux, and intra-SR Ca2	 diffusion.
Circ Res. 2008;103:e105–e115.

30. Cui X, Rovetti RJ, Yang L, Garfinkel A, Weiss JN, Qu Z. Period-
doubling bifurcation in an array of coupled stochastically excitable
elements subjected to global periodic forcing. Phys Rev Lett. 2009;103:
044102–044104.

31. Luzza F, Oreto G. Verapamil-induced electrical and cycle length
alternans during supraventricular tachycardia: what is the mechanism?
J Cardiovasc Electrophysiol. 2003;14:323–324.

32. Li Y, Diaz ME, Eisner DA, O’Neill S. The effects of membrane potential,
SR Ca2	 content and RyR responsiveness on systolic Ca2	 alternans in
rat ventricular myocytes. J Physiol. 2009;587:1283–1292.

33. Saitoh H, Bailey JC, Surawicz B. Action potential duration alternans in
dog Purkinje and ventricular muscle fibers: further evidence in support of
two different mechanisms. Circulation. 1989;80:1421–1431.

34. Dumitrescu C, Narayan P, Efimov IR, Cheng Y, Radin MJ, McCune SA,
Altschuld RA. Mechanical alternans and restitution in failing SHHF rat left
ventricles. Am J Physiol Heart Circ Physiol. 2002;282:H1320–H1326.

35. Schmidt AG, Kadambi VJ, Ball N, Sato Y, Walsh RA, Kranias EG, Hoit
BD. Cardiac-specific overexpression of calsequestrin results in left ven-
tricular hypertrophy, depressed force-frequency relation and pulsus
alternans in vivo. J Mol Cell Cardiol. 2000;32:1735–1744.

36. Terentyev D, Viatchenko-Karpinski S, Valdivia HH, Escobar AL, Gyorke
S. Luminal Ca2	 controls termination and refractory behavior of Ca2	-
induced Ca2	 release in cardiac myocytes. Circ Res. 2002;91:414–420.

37. Restrepo JG, Weiss JN, Karma A. Calsequestrin-mediated mechanism for
cellular calcium transient alternans. Biophys J. 2008;95:3767–3789.

38. Soeller C, Crossman D, Gilbert R, Cannell MB. Analysis of ryanodine
receptor clusters in rat and human cardiac myocytes. Proc Natl Acad Sci
U S A. 2007;104:14958–14963.

39. Chen-Izu Y, McCulle SL, Ward CW, Soeller C, Allen BM, Rabang C,
Cannell MB, Balke CW, Izu LT. Three-dimensional distribution of
ryanodine receptor clusters in cardiac myocytes. Biophys J. 2006;
91:1–13.

40. Franzini-Armstrong C, Protasi F, Ramesh V. Shape, size, and distribution
of Ca2	 release units and couplons in skeletal and cardiac muscles.
Biophys J. 1999;77:1528–1539.

41. Litwin SE, Zhang D, Bridge JH. Dyssynchronous Ca2	 sparks in
myocytes from infarcted hearts. Circ Res. 2000;87:1040–1047.

42. Gomez AM, Guatimosim S, Dilly KW, Vassort G, Lederer WJ. Heart
failure after myocardial infarction: altered excitation-contraction
coupling. Circulation. 2001;104:688–693.

43. Louch WE, Mork HK, Sexton J, Stromme TA, Laake P, Sjaastad I,
Sejersted OM. T-tubule disorganization and reduced synchrony of Ca2	

release in murine cardiomyocytes following myocardial infarction.
J Physiol. 2006;574:519–533.

44. Brette F, Orchard C. T-tubule function in mammalian cardiac myocytes.
Circ Res. 2003;92:1182–1192.

45. Qian YW, Clusin WT, Lin SF, Han J, Sung RJ. Spatial heterogeneity of
calcium transient alternans during the early phase of myocardial ischemia
in the blood-perfused rabbit heart. Circulation. 2001;104:2082–2087.

46. Wilson LD, Jeyaraj D, Wan X, Hoeker GS, Said TH, Gittinger M, Laurita
KR, Rosenbaum DS. Heart failure enhances susceptibility to arrhyth-
mogenic cardiac alternans. Heart Rhythm. 2009;6:251–259.

47. Lehnart SE, Terrenoire C, Reiken S, Wehrens XHT, Song L-S, Tillman
EJ, Mancarella S, Coromilas J, Lederer WJ, Kass RS, Marks AR. Stabi-
lization of cardiac ryanodine receptor prevents intracellular calcium leak
and arrhythmias. Proc Natl Acad Sci U S A. 2006;103:7906–7910.

48. Jiang D, Xiao B, Yang D, Wang R, Choi P, Zhang L, Cheng H, Chen SR.
RyR2 mutations linked to ventricular tachycardia and sudden death
reduce the threshold for store-overload-induced Ca2	 release (SOICR).
Proc Natl Acad Sci U S A. 2004;101:13062–13067.

49. Gyorke I, Hester N, Jones LR, Gyorke S. The role of calsequestrin,
triadin, and junctin in conferring cardiac ryanodine receptor respon-
siveness to luminal calcium. Biophys J. 2004;86:2121–2128.

50. Keizer J, Smith GD, Ponce-Dawson S, Pearson JE. Saltatory propagation
of Ca2	 waves by Ca2	 sparks. Biophys J. 1998;75:595–600.

51. Chen-Izu Y, Ward CW, Stark W Jr, Banyasz T, Sumandea MP, Balke
CW, Izu LT, Wehrens XH. Phosphorylation of RyR2 and shortening of
RyR2 cluster spacing in spontaneously hypertensive rat with heart failure.
Am J Physiol Heart Circ Physiol. 2007;293:H2409–H2417.

52. Shannon TR, Wang F, Bers DM. Regulation of cardiac sarcoplasmic
reticulum Ca release by luminal [Ca] and altered gating assessed with a
mathematical model. Biophys J. 2005;89:4096–4110.

53. Shannon TR, Ginsburg KS, Bers DM. Potentiation of fractional sarco-
plasmic reticulum calcium release by total and free intra-sarcoplasmic
reticulum calcium concentration. Biophys J. 2000;78:334–343.

54. Terentyev D, Kubalova Z, Valle G, Nori A, Vedamoorthyrao S, Ter-
entyeva R, Viatchenko-Karpinski S, Bers DM, Williams SC, Volpe P,
Gyorke S. Modulation of SR Ca release by luminal Ca and calsequestrin
in cardiac myocytes: effects of CASQ2 mutations linked to sudden
cardiac death. Biophys J. 2008;95:2037–2048.

Novelty and Significance

What Is Known?

● Pulsus alternans and T-wave alternans are associated with cardiac
arrhythmias and sudden death, and calcium alternans has been
assumed to be one type of cellular alternans responsible for
T-wave alternans and pulsus alternans of the heart.

● Calcium alternans tends to occur under conditions of calcium
overload and fast heart rates in normal cells and is exacerbated
under diseased conditions such as heart failure and ischemia.

What New Information Does This Article Contribute?

● A computer model that simulates spatially distributed Ca sparks and
whole-cell Ca alternans.

● A novel mechanism of Ca alternans that links whole-cell Ca alternans
to the properties of Ca sparks.

The mechanisms of calcium alternans are not well understood
and remain controversial. Using computer simulation and theo-
retical analysis, we developed a novel theory of calcium
alternans that mechanistically links random, locally interacting
calcium sparks to a stable whole-cell calcium alternans. We
show that Ca alternans is a collective behavior of calcium
sparks, driven by the synergistic interactions of 3 key properties
of the calcium release units (CRUs): refractoriness of the CRUs,
random activation of CRUs, and sparks inducing neighboring
CRUs to spark. Through these 3 properties, one can link various
molecular factors, such as calsequestrin regulation of the
ryanodine receptors, and structural factors, such as the inter-
CRU distance, to whole-cell alternans, providing a unified
mechanistic understanding of calcium alternans attributable to
seemingly unrelated causes.
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I. Mathematical equations of the model

Notation and Conventions

Throughout this supplement we use single-letter subscripts to denote the four principal regions of
the cell: myoplasm (m), network SR (s), junctional SR (j), and dyadic space (d). We suppress
use of the spatial variable x except where explicitly needed. In cases where we refer to indexed
positions for the CRUs, we use the superscript (i), with the additional understanding that x(i) is the
location of the ith CRU.

Currents related to the myoplasm and SR domains are generally computed as “current densities” in
units of concentration per time (µM/ms), with myoplasm as the reference volume, and are denoted
with a capital J. The ratio of the myoplasm to SR volume is given as κ. Currents related to the
local dyadic space and junctional SR compartments of a CRU are generally computed as “ionic
fluxes” in units of ions per time, and are denoted with a capital I. At locations along the myoplasm
or SR domains which come into contact with a CRU, these two types of currents are summed by
first converting ionic fluxes to current densities (with units of concentration per time) by assuming
the ions flow into or out of a local volume element ξm (or ξs) in the myoplasm (or SR), near the
point of contact 1. For consistency, we must have the restriction ξm/ξs = κ. See Section II for
futher discussion.

Fundamental Equations

The time evolution of the concentration of calcium in the two-dimensional myoplasm and the
network SR domain is modelled using a reaction-diffusion equation following the general form
as by Dawson et al 1. Spatially-continuous reaction terms couple the two domains and extrude
calcium from the myoplasm domain. At discrete locations, additional reaction terms also couple
the two domains via the CRUs, each of which contains a junctional SR compartment and a dyadic
space compartment.

The system of equations for the evolution of calcium in the cell is

βm(cm)
∂cm

∂t
= Dm∇2cm + Jm

∂cs

∂t
= Ds∇2cs + Js

βd(cd)
dc(i)d
dt

= J(i)d

dc(i)j

dt
= J(i)j

where cm(x) and cs(x) are the local concentrations in the myoplasm and network SR, respectively,
and c(i)d and c(i)j are the calcium concentration in the ith dyadic space and ith junctional SR, respec-
tively. The myoplasm and SR domains have diffusion coefficients Dm and Ds, respectively.

We assume calcium is buffered in the myoplasm (βm) and dyadic spaces (βd) only, by both dis-
solved calmodulin protein and SR-bound proteins, and that such buffering occurs rapidly enough
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to be modelled 2 with the instantaneous capacity functions

βm(c) = 1+
BsrKsr

(c+Ksr)
2 +

BcdKcd

(c+Kcd)
2

βd(c) = 1+
B′

srK
′
sr

(c+K′
sr)

2 +
B′

cdK′
cd(

c+K′
cd

)2

The terms Jm, Js, J(i)d and J(i)j represent the net current for each principal region, and are specified
below.

Remaining physiological parameters for this section are defined in Online Table I.

Myoplasm flux equations

Ca enters and leaves the myoplasm due to uptake, exchange, and background leak currents, with
net current density

Jm =−Jup − JNCX + Jbg + JSRleak +ξ−1
m ∑

i
δ(x− x(i))I(i)ds

The proteins mediating the SR uptake, NaCa exchange, and cell background and SR leak cur-
rents are generally found distributed evenly throughout their respective regions, thus we model the
corresponding current densities as spatially-continuous functions of position.

The SERCA uptake pump is modelled to be driven solely by the myoplasm Ca with the simple hill
function

Jup = vup
c2

m
c2

m + k2
up

with a maximum velocity vup and half-maximal concentration kup.

The Ca current through the sodium-calcium exchange (NCX) pump, known to be a reversible cur-
rent sensitive to both myoplasm Ca and membrane voltage, is modelled following the physiological
model of Weber et al 3:

JNCX = v2

(
eηϕ[Na]3i [Ca]o − e(η−1)ϕ[Na]3ocm

)(
1+ ksate(η−1)ϕ

)−1

(
1+
(

KmCaact
cm

)3
)

KmCao[Na]3i +K3
mNao

cm +K3
mNai

[Ca]o

(
1+

cm

KmCai

)
+

KmCai [Na]3o

(
1+

[Na]3i
K3

mNai

)
+[Na]3i [Ca]o +[Na]3ocm


where ϕ = vF/RT , and v is the net membrane potential (taking the outside of the cell as the
reference value). The equation accounts for Ca and Na both inside and outside of the cell. Since
our model does not describe Na dynamics as part of the action potential of the myocyte, we assign
the internal Na ([Na]i) a constant average value consistent with experimental data.

3
 at UCLA BIOMED LIBRARY SERIALS on May 29, 2010 circres.ahajournals.orgDownloaded from 

http://circres.ahajournals.org


A background Ca leak current Jbg into and out of the cell is modelled as a linear function of
membrane potential:

Jbg =−gbg(v−10)

A passive Ca leak current JSRleak out of the SR into the cell is modelled as a linear function of the
Ca gradient:

JSRleak = gSRleak(cs − cm)

The ionic flux I(i)ds between the local myoplasm and the ith dyadic space, defined below, is a
spatially-discrete current, present only at position x(i). The ionic flux, in units of ions per time,
is normalized by the local myoplasm volume element ξm, as explained earlier, to produce a term
in units of concentration per time (µM/ms).

Remaining physiological parameters for this section are defined in Online Table II.

SR flux equations

Ca enters and leaves the network SR due to uptake and transfer currents, with net value

Js = κ(Jup − JSRleak)−ξ−1
s ∑

i
δ(x− x(i))I(i)jsr

The magnitude of the SR uptake and leak currents is rescaled by κ to account for the differing
volumes of the SR and the myoplasm. The ionic flux of transfer to the local jSR is converted to
units of concentration per time by ξs. The equation for the junctional SR transfer flux (I jsr) is
below.

Junctional SR equations

The net current density of Ca for the ith junctional SR (with volume Vj) is

J(i)j =
(

I(i)jsr − I(i)ryr

)
V−1

j

in which I(i)ryr is as described below, and

I(i)jsr = g jsr

(
cs(x(i))− c(i)j

)
gives a first-order refilling of Ca from the network SR to the jSR with refilling rate rate gsr.

Remaining physiological parameters for this section are defined in Online Table III.

Dyadic space equations

The net current density of Ca for the ith dyadic space, including that flowing through the stochastic
RyR and LCC channels, is

J(i)d =
(
−I(i)ds + I(i)lcc + I(i)ryr

)
V−1

d

The transfer flux Ids from the dyadic space to the local myoplasm is dependent on the local gradient
with flux rate gds:

I(i)ds = gds

(
c(i)d − cm(x(i))

)
4
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Ca flux into the dyadic space, via either the L-type Ca channel (LCC) or the RyR channel, is the
major route of entry of Ca into the cell as well as of central importance in this work. Because
this entry is governed by a small number of interacting ion channels in each dyadic space, we
represent the current through both types of channels as a random walk on simple Markov models,
as described below.

Remaining physiological parameters for this section are defined in Online Table III.

Model for current through L-type calcium channels

In each dyadic space is a small cluster of L-type calcium channels; the kinetic of each channel are
represented independently with a minimal 3-state Markov model, adapted from Hinch et al 4 (see
Online Figure VI). The transition rates into and out of each state are computed locally for each
CaRU, as they are dependent on the local dyadic Ca, and are given by

α1 = a1
θ+0.0625

14θ+0.0625

β1 = b1c(i)d
θ+0.0625

θ+1.0

α2 = a2
θ

θ+1
β2 = b2

where θ = exp((v+ 2)/7), v is the membrane voltage of the cell, and a1, a2, b1, and b2 are ad-
justable constants.

There are nL LCC channels in a single dyadic space, and each channel is simulated independently.
Let L(i) ∈ {0,1, ...,nL} be a stochastic variable indicating the number of LCC channels in the
open (O) state at any given time in the ith dyadic space. Then the total ionic flux through all
LCC channels of the ith dyadic space is given by the voltage-dependent Goldman-Hodgkin-Katz
equation

I(i)lcc = L(i)gCaPCa
2ϕ(βCa[Ca]o − e2ϕc(i)d )

(e2ϕ −1)

where, again, ϕ = vF/RT .

Remaining physiological parameters for this section are defined in Online Table IV. The dynamics
of the stochastic variable L(i) are described in the section ”Numerical Methods”.

Model for current through RyR channels

In each dyadic space is a larger cluster of RyR calcium channels; the kinetics of each channel are
represented with a minimal 4-state Markov model, adapted from Stern et al 5, which described the
channel as having closed (C), open (O), inactivated (I) and refractory (R) states (see Online Figure
VI). The transition rates for the two ”horizontal” transitions (C to O, and R to I) are equivalent, with

forward rate k+a
(

c(i)d

)2
dependent on the square of dyadic calcium, and constant reverse rate k−a .

Similarly, the transition rates for the two ”vertical” transitions (O to I, and C to R) are equivalent,
with forward rate k+b c(i)d and reverse rate k−b .
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There are nR RyR channels in a single dyadic space, and each channel is simulated independently.
Let R(i) ∈ {0,1, ...,nR} be a stochastic variable indicating the number of RyR channels in the open
(O) state at any given time in the ith dyadic space. We then assume the total ionic flux flowing
through the entire RyR cluster of the ith dyadic space is dependent on the gradient between the
local jSR and dyadic space, and is given by

I(i)ryr = R(i)gryr

(
c(i)j − c(i)d

)
Remaining physiological parameters for this section are defined in Online Table V. The dynamics
of the stochastic variable R(i) are described in the section ”Numerical Methods”.

Membrane voltage pacing

In the absence of a dynamical model of voltage, we adopt a simple repeating waveform of period
PCL (pacing cycle length) in which the voltage rise from vrest to an action potential plateau value
vap. After 3/4 of the action potential duration (APD) has elapsed, the voltage returns linearly to
vrest . For t ′ = t mod PCL within each cycle,

v(t ′) =


vap for 0 ≤ t ′ < 3

4APD
vap +

vrest−vap
1
4 APD

(
t ′− 3

4APD
)

for 3
4APD ≤ t ′ < APD

vrest for APD ≤ t ′ < PCL

Remaining physiological parameters for this section are defined in Online Table VI.
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II. Numerical methods

Diffusion and flux

The governing equations are advanced through time using a first-order forward Euler method with
time step ∆t = 0.005 ms and mesh spacing ∆x = 0.2 µm. ∗ In each timestep, the two concentration
state variables cm and cs are updated twice, following an operator-splitting scheme 6, applying first
the reaction (flux) terms and then the diffusion terms. Thus at timestep n (denoted with brack-
ets), values are first updated to an intermediate value (denoted by timestep n′) with the following
scheme:

cm[n′] = cm[n]+∆tβm(cm[n])−1Jm[n]
cs[n′] = cs[n]+∆tJs

c(i)d [n′] = c(i)d [n]+∆tβd(c
(i)
d [n])−1J(i)d [n]

c(i)j [n′] = c(i)j [n]+∆tJ(i)j [n]

The spatial diffusion step is then applied to cm and cs (using superscripts i and j to denote position
⟨i∆x, j∆x⟩ in the x-y plane):

ci, j
m [n+1] = ci, j

m [n′]+
Dm∆t
∆x2 βm(ci, j

m [n′])−1 [ci−1, j
m [n′]+ ci+1, j

m [n′]+ ci, j−1
m [n′]+ ci, j+1

m [n′]−4ci, j
m [n′]

]
ci, j

s [n+1] = ci, j
s [n′]+

Ds∆t
∆x2

[
ci−1, j

s [n′]+ ci+1, j
s [n′]+ ci, j−1

s [n′]+ ci, j+1
s [n′]−4ci, j

s [n′]
]

for Ca in the myoplasm (cm) and network SR (cs).

Ion channel kinetics

The remaining state variables in the model are the ion channel states for each release unit, repre-
sented as continuous-time discrete-state Markov models. These are updated stochastically, and
asynchronously to the concentration variables, using a Monte Carlo scheme with an adaptive
timestep. For the purposes of stochastic simulation, the LCC and RyR channel kinetics are for-
mulated in the style of a chemical master equation. Because each dyadic space is treated as a
single-pool element, with no information about its spatial arrangement (other than the local vol-
ume), we assume that in the ith CRU every channel of a given type ”sees” the same environment
and thus has identical transition rates. Thus we can treat each channel type as a group, tracking
only the number of channels in each possible state 7. We note here that because of the nonconstant
nature of the time-dependent transition rates, we resort to explicit first-order methods and do not
consider more efficient methods such as “tau-leaping” 7.

∗Although diffusion in this model is not explicity three-dimensional, we can conceptually employ a “depth” term
∆z so that we may refer to volume in ordinary units (µm3). Depths of ∆zmyo = 5 µm and ∆znsr = 0.2 µm are consistent
with the local volume elements ξm = 0.2 µm3 = (∆x)(∆x)(∆zmyo) and ξs = 0.008 µm3 = (∆x)(∆x)(∆znsr), and also
maintain the volume ratio κ = 25 = ∆zmyo/∆znsr, as given in the previous section. These ∆z terms do not appear in any
equations in this supplement, and are invoked here only for purpose of explanation.
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In what follows, we present a general method for numerical simulation of a cluster of ion channels
of a given type. In Section I we explicitly refered to the ith CRU by using the (i) index notation;
here we suppress this notation, with the understanding that the algorithm is independently executed
for each CRU and for each of the two channel clusters (RyR or LCC) within that CRU.

For an arbitrary cluster, let there be Nc ion channels following a markov state model that has Ns
states labelled {1, · · · ,Ns}, and Nt possible transitions between states with transition rates λ jk, with
1 ≤ j,k ≤ Ns, j ̸= k for transition between state j and state k. Let s j be the number of channels
in the jth state (so that ∑ j s j = Nc). We assume that in a sufficiently small time step, only one
transition will take place such that for some j and k, s j → s j −1 and sk → sk +1 (that is, the count
of one state increase while the count of the other decreases) and no other changes take place.

Because the local Ca concentration values (which determine the transition rates) are constantly
changing, what qualifies as a “sufficiently small” timestep is also variable, and we wish to take
advantage of those epochs when the transition rates are low by adapting the local computational
timestep δt for that CRU. We first choose a minimum local time step ε such that it is both much
smaller than, and evenly divisible into, ∆t, the global timestep of the diffusion computation step
above. After each update step, we will compute the next adaptive time step δt as a multiple of this
minimum value (ie, δt = nε for n ∈ {1, · · · ,∆t/ε}). The transition probabilities are computed using
this local timestep, an update step is taken, and then a new local time step is computed.

To choose an appropriate value for δt, consider the sum ∑ j,k s jλ jk = λ as a “total” transition
rate. Invoking a core property of such Markov models, we assume that the probability that the
waiting time t ′ until the next transition is larger than δt is P(t ′ > δt) = e−λ δt . Because calling
the exponential (or log) function is computationally expensive, we use the common approxima-
tion P(t ′ > δt) ≈ λ δt, and aim to limit the error in this approximation by imposing the bound
P(t ′ > δt)≤ τ for some acceptable tolerance level (we choose τ = 0.10), which leads to the selec-
tion

δt =
τ
λ

or alternatively, n = τ
λε , where n is the number of minimum time steps ε we wish to wait until again

reevaluating the channel states.

Having adapted the local timestep to the current transition rates, we can then implement a simple
Monte Carlo update to choose which of the transitions will occur (if any). We must first make two
definitions. First, assign the values λ(l), for l ∈ {1, · · · ,Nt}, as an arbitrary ordering of the set of
transition probabilities s jλ jkδt, for 1 ≤ j,k ≤ Ns, j ̸= k. Second, let Sk = ∑k

l=1 λ(l) create a partition
of the interval [0,1] into 0 < S1 < S2 < · · ·< SNt < 1. Then, the following numerical algorithm is
used:

1. Compute the individual transition probabilities λ(l) as well as the sum ∑
j,k

s jλ jk = λ

2. Compute the local timestep δt = min(τ/λε,∆t); wait this time.

3. Draw a uniform random number r ∈ [0,1]. Update the channel states by making the ith
transition corresponding to Si−1 ≤ r < Si. If SNt < r < 1 then no transition takes place.
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III. Derivation of the iterated map model

Consider an array of CRUs, each of which is either excited (ie, in state “1”) or resting (in state
“0”). Assume that each CRU has n total nearest neighbors with which it can interact. To construct
the probability Pk+1[1] of a CRU being in state 1 on the next beat k+ 1, we first need to define
another quantity, the joint probability Pa

k (m) that, on the previous beat k, the CRU and exactly m
of its neighbors are available to spark, given their behavior on the previous beat k (they can be
available either because they did not spark, or they did spark, and recovered from their refractory
period early enough to spark again). Then we can write the following master equation:

Pk+1[1] =
n

∑
m=0

Pa
k (m)

[
α+(1−α)

m

∑
j=0

Bm(Pa
k α; j)ω( j)

]

where the large term in brackets states that a CRU could spark either by primary excitation (with
probability α) or, if not, then by neighbor recruitment, which itself depends on how many neighbors
have also fired on the same beat. The inner sum accounts for j of m possible neighbors firing, where
Bm(Pa

k α; j) =
(m

j

)(
Pa

k α
) j (1−Pa

k α
)(m− j) is the binomial probability that j out of m neighbors fire

(each having independent probability Pa
k α, where Pa

k is the probability that the CRU is available
after beat k, independent of the recent behavior of its neighbors ), and ω( j) is the probability that
the central unit will be excited given j neighbors did fire. Because only the number of excited
neighbors in the neighborhood, and not the location (ie, north, south, east, or west), matters, we
need only count the total number of neighbors exicted.

The function ω( j) describes the receptiveness of a unit to recruitment by its surrounding neighbors
in the lattice; it should increase monotonically with j and saturate to 1. A simple function that
meets these criteria is ω( j) = 1− e−s j for some scaling parameter s. If we identify γ = ω(1) =
1− e−s as the probability that a single neighbor can recruit a unit, we can rewrite ω( j) as

ω( j) = 1− (1− γ) j

where we have now characterized ω( j) as the probability that at least one recruitment, out of j
total chances and each with independent chance γ, will take place.

Returning to the master equation, we now make the simplying assumption that neighboring CRUs
are independent from beat to beat, in the sense that whether one CRU sparked on the previous
beat is not correlated with whether any of its neighbors fired. This implies that the joint probability
Pa

k (m) that the CRU and exactly m ≤ n of its neighbors are available to spark is equal to the product

Pa
k (m) = Pa

k Bn(Pa
k ;m)

where Pa
k is defined as before. (We note that this assumption implies a randomized, “well-mixed

system”, such that any spatial inhomogeneities that might emerge over repeated application of the
update rules are ignored.)
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Making the appropriate substitutions, the master equation now becomes

Pk+1[1] =Pa
k

n

∑
m=0

Bn(Pa
k ;m)

[
α+(1−α)

m

∑
j=0

Bm(α; j)ω( j)

]

=Pa
k

n

∑
m=0

Bn(Pa
k ;m) [α+(1−α)(1− (1−αγ)m)]

=Pa
k [α+(1−α)(1− (1−Pa

k αγ)n)]

Finally, we make the mean-field assumption that in an array of N0 CRUs, the number Nk+1 that
spark on the next beat is the expected value

Nk+1 = N0Pk+1[1]

and that the number Ak of CRUs that are available to spark following beat k is

Ak = N0Pa
k

= N0 (Pk[0]+ (1−β)Pk[1])
= N0 −βNk

where β is the probability that a CRU is refractory following a spark. Making these final substitu-
tions, we have the iterated map equation for the number of sparks:

Nk+1 = Ak

[
α+(1−α)(1− (1− Ak

N0
αγ)n)

]
As given in the main text, we identify the probability of a secondary spark as f = 1− (1− Ak

N0
αγ)n

to yield
Nk+1 = Ak [α+(1−α) f ]
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IV.   Linear stability analysis of the iterated map model 

For convenience, we rewrite the iterated map model (Eqs. 2 and 3 from the main text): 
Nk+1=(N0-βNk)[α+(1-α)f]                    (I) 

where f is 
n

kk NNNf )]/1(1[1),,,( 0βαγγβα −−−=             (II) 
At steady state, the spark number Ns satisfies (since Nk+1=Nk=Ns):  

Ns=(N0-βNs)[α+(1-α)f]                         (III) 
Assume the system begins at the steady state and a small perturbation δNk is added to the kth 
beat, i,e.,  Nk=Ns+δNk, which results in a deviation δNk+1 to the (k+1)th beat, i.e., Nk+1=Ns+δNk+1. 
Inserting Nk and Nk+1 into Eq.I, one obtains: 

Ns+δNk+1=[N0-β(Ns+δNk)][α+(1-α)f(α,β,γ,Ns+δNk)]                        (IV) 
Using a Taylor expansion and Eq.III, one has: 

k
k

skk N
dN
dfNNNfN δαβδααβδ )1)((])1([ 01 −−+−+−=+

                (V) 

where  

kk

k

kK da
df

NdN
da

da
df

dN
df

0

β
−==                             (VI) 

and ak=(1-βNk/N0) is the proportion of available CRUs.  Inserting Eq.VI into Eq.V, one has 

kk
k

sk NN
da
dfNNfN λδδαββααβδ =−−−−+−=+ })1)(/1(])1([{ 01            (VII) 

where  

])1)(/1()1([ 0
k

s da
dfNNf αβααβλ −−+−+−=                   (VIII) 

After several (j) iterations, the perturbation will become:  
k

j
jk NN δλδ =+                 (IX) 

From Eq.IX, if  |λ|>1, the perturbation grows, indicating that the steady state is unstable. In 
addition, if λ<-1, the perturbation alternates in positive and negative values, resulting in an 
alternating pattern of spark numbers. Therefore, the criterion for alternans to occur is  λ<-1 with 
the critical case as λ=-1. Therefore, based on Eq.VIII, a larger β and steeper recruitment fraction 
f  (whose slope is determined by α and γ, see Online Figure VII) are in favor of the instability 
leading to spark alternans (Online Figure VIII).   
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VI. Supplemental Tables

Online Table I: Parameter values for diffusion and buffering equations

Symbol Definition Value
Dm Diffusion coefficient of Ca in myoplasm 0.35 µm2 ms−1

Ds Diffusion coefficient of Ca in SR 1.4 µm2 ms−1

κ Ratio of myoplasm to network SR volume 25.0
ξm Local volume element for myoplasm 0.200 µm3

ξs Local volume element for network SR 0.008 µm3

Bsr Concentration of SR-bound buffer (myoplasm) 7.0 µM
Ksr Dissociation constant of SR-bound buffer (myoplasm) 0.3 µM
Bcd Concentration of calmodulin buffer (myoplasm) 15.0 µM
Kcd Dissociation constant of calmodulin buffer (myoplasm) 13.0 µM
B′

sr Concentration of SR-bound buffer (dyadic space) 47.0 µM
K′

sr Dissociation constant of SR-bound buffer (dyadic space) 0.6 µM
B′

cd Concentration of calmodulin buffer (dyadic space) 24.0 µM
K′

cd Dissociation constant of calmodulin buffer (dyadic space) 7.0 µM

Online Table II: Parameter values for SERCA (uptake), NCX, and background leak currents

Symbol Definition Value
vup Maximum pump rate of SERCA 0.32 µM ms−1

kup Half-maximal activation constant for SERCA 1.0 µM
v2 Adjustable pump rate constant of NCX 0.4 µM ms−1

η NCX voltage sensitivity constant 0.35
F Faraday’s constant 96.5 C mmol−1

R Gas constant 8.314 J M−1 K−1

T Temperature 310 K
[Ca]o External [Ca] 1.80 mM ⋆
[Na]o External [Na] 136 mM
[Na]i Internal [Na] 10.0 mM
KmCaact Allosteric Ca inactivation constant 0.11 µM
KmCao External Ca sensitivity constant 1.30 mM
KmNao External Na sensitivity constant 87.5 mM
KmCai Internal Ca sensitivity constant 3.59 µM
KmNai Internal Na sensitivity constant 12.3 mM
ksat NCX saturation constant 0.27
gbg Rate of background membrane leak 4.0 ·10−5 µM ms−1 mV−1

gSRleak Rate of SR leak 4.0 ·10−6 µM ms−1

⋆ These values may have been modified as noted in text
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Online Table III: Parameter values for other CRU fluxes

Symbol Definition Value
g jsr Flux rate from network to junctional SR 0.1 µm3 ms−1

gds Flux rate from dyadic space to myoplasm 0.303 µm3 ms−1

Vd Volume of a single dyadic space 1.26 ·10−3 µm3

V j Volume of a single junctional SR 0.1 µm3

Online Table IV: Parameter values for LCCs

Symbol Definition Value
gCa Adjustable LCC current multiplier 1.0 ⋆
PCa Ca Permeability 0.913 µm3 s−1

βCa Ca partition coefficient 0.341
a1 LCC rate constant (I to C) 3.23 µs−1

a2 LCC rate constant (C to O) 0.30 ms−1

b1 LCC rate constant (C to I) 0.154 µM−1 ms−1

b2 LCC rate constant (O to C) 1.0 ms−1

nL Number of L-type Ca channels per dyadic space 5
⋆ These values may have been modified as noted in text

Online Table V: Parameter values for RyR channels

Symbol Definition Value
k+a Opening rate coefficient (C to O / R to I) 0.005 µM−2 ms−1

k−a Closing rate coefficient (O to C / I to R) 1.0 ms−1

k+b Inactivation rate coefficient (C to R / O to I) 0.00075 µM−1 ms−1

k−b Recovery rate coefficient (R to C / I to O) 0.003 ms−1

gryr Flux rate from jSR to dyadic space 0.000205 µm3 ms−1

nR Number of RyR channels per dyadic space 100

Online Table VI: Parameter values for action potential

Symbol Definition Value
vap Peak voltage during action potential 10 mV
vrest Resting voltage during diastole −80 mV
APD Action potential duration 200 ms
PCL Pacing cycle length 200−1000 ms ⋆
⋆ These values may have been modified as noted in text
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VII. Supplemental figures 
 

 
Figure I. A-C: Total sparks (green squares), primary sparks (blue triangles), recruited sparks 
(red circles), and number of CRUs accompanied by LCC openings (red diamonds), measured 
from the simulations (Fig.3 and Fig.4). A. Steady state (no alternans) at PCL=1400 ms. B. 
Alternans at PCL=500 ms. C. Recruitment ratio calculated as the number of recruited sparks 
over the total number of sparks for PCL=500 ms. D-F. Same as A-C but from the iterated map 
model (theory). D. Steady state (no alternans) for  α=0.55, β=0.2, and γ=0.35. E. Alternans for  
α=0.75, β=0.98, and γ=0.75 .  F. The recruitment ratio of E. 

Although α, β, and γ cannot be directly obtained from the Ca cycling model, we can 
estimate their values using the simulation results and the theory, as described below:  

For PCL=1400 ms (panel A), out of the total 10000 CRUs, there are on average 6640 
total sparks, of  which 4670 are primary (due to LCC openings), and 1970 are secondary 
(recruited). The primary sparks satisfy: number of primary sparks=αAk=α(N0-βNk), where Nk is 
the total number of sparks and is the same for each beat. Inserting numbers for total CRUs, the 
primary sparks, and the total sparks into this equation, one has: 4670=α(10000-6640β). Using 
the secondary spark formulation, i.e., secondary sparks=(1-α)Akf, and the function f in Eq.3 with 
n=4, one has: (1-α)[1-(1-0.467γ)4]/α=0.197/0.467. We cannot obtain the three unknowns from 
the two equations, but if we set β=0, for example, we have α=0.467 and γ=0.23; if β=0.2, we 
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have α=0.54, and γ=0.34.  For PCL=500 ms (panel C), for the high beat, there are (on average) 
8360 total sparks, 6411 primary ones, and 1949 secondary ones; for the low beat, there are 2237 
total sparks, 1909 primary ones, and 328 secondary ones. The primary sparks for the high beat 
satisfy: α(10000-2237β)=6411; and for the low beat satisfy: α(10000-8360β)=1909. Using these 
two equations, we obtain α=0.8, and β=0.91. Even using these numbers and the formulation of 
the secondary sparks, we cannot obtain a completely consistent γ. One of the reasons may be that 
in the simulation of the Ca cycling model, there is sequential recruitment (i.e., 
spark spark  … spark) in the same beat to facilitate Ca waves, but in our mean-field theory, 
we assumed only one step recruitment. Nevertheless, this method, although incomplete, can 
result in a good quantitative estimate of the parameters.  The results from the iterated map shown 
in D-F were obtained using α, β, and γ that are similar to the estimated values, which resulted in 
similar results as those from the computer simulation (compare panels A-C with panels D-F). 
 
 
 
 

Figure II. A. Line-scans of regular Ca release in experiments by Diaz et al. B. Line-scans from 
our simulation shown in Fig.3 during slow pacing. 
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Figure III. A.  Line-scans during Ca alternans in experiments by Diaz et al. B. Line-scans from 
our simulation shown in Fig.4 during fast pacing. 
 
 

Figure IV. A-E. Five examples of Ca sparks and blinks by recordings of Ca concentration from 
the jSR (dashed blue) and dyadic space (red) of five CRUs. 
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Figure V.  A. SR depletion vs. load (left) and SR Ca content vs. time from a simulation using a 
“ramp pacing” protocol. B. The experimental recordings from Picht et al. 
 
 
 
 

 
 
Figure VI. Markov models for LCCs (left) and RyR channels (right). The rate constants are 
detailed in the Online text. 

640 660 680 700

50

100

150

200

10 20 30 40 50 60 70

500

550

600

650

700

S
R

 d
ep

le
tio

n 
(µ

M
)

SR load (µM)

Stable
alternans

Regular
depletions

Time (s)

S
R

 c
on

te
nt

 (µ
M

)

A

B

PCL=500 ms

PCL=2000 ms

Simulation results

Experimental data by Picht et al



 19

 

 
 
 
 
 
 
 
 
 

 

0.0 0.5 1.0
0.0

0.5

1.0

ak

γ=3/4
γ=1/2
γ=1/4

0.0 0.5 1.0
0.0

0.5

1.0
α=7/8
α=2/3
α=2/5

f

ak  
 
Figure VII. Plots of Eq.II (n=4) for different γ (α=2/3) and α (γ=3/4). 
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Figure VIII. Spark alternans region (above the lines) for two  different β, and n=4.  




